Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Chem Pharm Bull (Tokyo) ; 71(5): 374-379, 2023.
Article in English | MEDLINE | ID: covidwho-2315364

ABSTRACT

Screening for bioactivity related to anti-infective, anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-viral activity, led us to identify active compounds from a methanol extract of Litsea japonica (Thub.) Juss. and the hot water extract of bark of Cinnamomum sieboldii Meisn (also known as Karaki or Okinawa cinnamon). The two main components in these extracts were identified as the catechin trimers (+)-cinnamtannin B1 and pavetannin B5. Moreover, these extracts exhibited anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity. The structures of these catechin trimers were previously determined by chemical and spectroscopic methods. Pavetanin B5 has never been reported to be isolated as a pure form and has been obtained as a mixture with another component. Although other groups have reported the putative structure of pavetannin B5, preparation of the methylated derivative of pavetannin B5 in this study allowed us to obtain the pure form for the first time as the undecamethyl derivative and confirm its exact structure. Commercially available (+)-cinnamtannin B1 and aesculitannin B (C2'-epimer of cinnamtannin B1) both of which contained pavetannin B5 as a minor component, and C. sieboldii bark extract (approx. 5/2 mixture of (+)-cinnamtannin B1/pavetannin B5) were assessed for anti-SARS-CoV-2 activity. Both C. sieboldii bark extract and commercially available aesculitannin B showed viral growth inhibitory activity.


Subject(s)
COVID-19 , Catechin , Cinnamomum , Methicillin-Resistant Staphylococcus aureus , Catechin/pharmacology , Plant Bark/chemistry , SARS-CoV-2 , Plant Extracts/chemistry
2.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2200538

ABSTRACT

A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.


Subject(s)
Catechin , Proanthocyanidins , Virus Diseases , Viruses , Humans , Proanthocyanidins/pharmacology , Antiviral Agents/pharmacology , Virus Attachment , Catechin/pharmacology
3.
Comput Biol Med ; 151(Pt A): 106288, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2104649

ABSTRACT

SARS-CoV-2 Mpro (Mpro) is the critical cysteine protease in coronavirus viral replication. Tea polyphenols are effective Mpro inhibitors. Therefore, we aim to isolate and synthesize more novel tea polyphenols from Zhenghedabai (ZHDB) white tea methanol-water (MW) extracts that might inhibit COVID-19. Through molecular networking, 33 compounds were identified and divided into 5 clusters. Further, natural products molecular network (MN) analysis showed that MN1 has new phenylpropanoid-substituted ester-catechin (PSEC), and MN5 has the important basic compound type hydroxycinnamoylcatechins (HCCs). Thus, a new PSEC (1, PSEC636) was isolated, which can be further detected in 14 green tea samples. A series of HCCs were synthesized (2-6), including three new acetylated HCCs (3-5). Then we used surface plasmon resonance (SPR) to analyze the equilibrium dissociation constants (KD) for the interaction of 12 catechins and Mpro. The KD values of PSEC636 (1), EGC-C (2), and EC-CDA (3) were 2.25, 2.81, and 2.44 µM, respectively. Moreover, compounds 1, 2, and 3 showed the potential Mpro inhibition with IC50 5.95 ± 0.17, 9.09 ± 0.22, and 23.10 ± 0.69 µM, respectively. Further, we used induced fit docking (IFD), binding pose metadynamics (BPMD), and molecular dynamics (MD) to explore the stable binding pose of Mpro-1, showing that 1 could tightly bond with the amino acid residues THR26, HIS41, CYS44, TYR54, GLU166, and ASP187. The computer modeling studies reveal that the ester, acetyl, and pyrogallol groups could improve inhibitory activity. Our research suggests that these catechins are effective Mpro inhibitors, and might be developed as therapeutics against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Catechin , Humans , SARS-CoV-2 , Catechin/pharmacology , Tea , Polyphenols , Esters
4.
Sci Rep ; 12(1): 13146, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1967629

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 has been recognized as an attractive drug target because of its central role in viral replication. Our previous preliminary molecular docking studies showed that theaflavin 3-gallate (a natural bioactive molecule derived from theaflavin and found in high abundance in black tea) exhibited better docking scores than repurposed drugs (Atazanavir, Darunavir, Lopinavir). In this study, conventional and steered MD-simulations analyses revealed stronger interactions of theaflavin 3-gallate with the active site residues of Mpro than theaflavin and a standard molecule GC373 (a known inhibitor of Mpro and novel broad-spectrum anti-viral agent). Theaflavin 3-gallate inhibited Mpro protein of SARS-CoV-2 with an IC50 value of 18.48 ± 1.29 µM. Treatment of SARS-CoV-2 (Indian/a3i clade/2020 isolate) with 200 µM of theaflavin 3-gallate in vitro using Vero cells and quantifying viral transcripts demonstrated reduction of viral count by 75% (viral particles reduced from Log106.7 to Log106.1). Overall, our findings suggest that theaflavin 3-gallate effectively targets the Mpro thus limiting the replication of the SARS-CoV-2 virus in vitro.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biflavonoids , Catechin , Chlorocebus aethiops , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Vero Cells
5.
Sci Rep ; 12(1): 12899, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960506

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emphasized the serious threat to human health posed by emerging coronaviruses. Effective broadly-acting antiviral countermeasures are urgently needed to prepare for future emerging CoVs, as vaccine development is not compatible with a rapid response to a newly emerging virus. The green tea catechin, epigallocatechin gallate (EGCG), has broad-spectrum antiviral activity, although its mechanisms against coronavirus (CoV) infection have remained unclear. Here, we show that EGCG prevents human and murine CoV infection and blocks the entry of lentiviral particles pseudotyped with spike proteins from bat or highly pathogenic CoVs, including SARS-CoV-2 variants of concern, in lung epithelial cells. Mechanistically, EGCG treatment reduces CoV attachment to target cell surfaces by interfering with attachment to cell-surface glycans. Heparan sulfate proteoglycans are a required attachment factor for SARS-CoV-2 and are shown here to be important in endemic HCoV-OC43 infection. We show that EGCG can compete with heparin, a heparan sulfate analog, for virion binding. Our results highlight heparan sulfate as a conserved cell attachment factor for CoVs, and demonstrate the potential for the development of pan-coronavirus attachment inhibitors, which may be useful to protect against future emerging CoVs.


Subject(s)
COVID-19 Drug Treatment , Catechin , Animals , Antiviral Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Heparitin Sulfate , Humans , Mice , Pandemics , SARS-CoV-2 , Tea
6.
Phytother Res ; 36(11): 4210-4229, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1935726

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In China, the Acacia catechu (AC)-Scutellariae Radix (SR) formula has been widely used for pulmonary infection in clinical practice for several centuries. However, the potential role and mechanisms of this formula against COVID-19 remains unclear. The present study was designed to dissect the active ingredients, molecular targets, and the therapeutic mechanisms of AC-SR formula in the treatment of COVID-19 based on a systems pharmacology strategy integrated by ADME screening, target prediction, network analysis, GO and KEGG enrichment analysis, molecular docking, and molecular dynamic (MD) simulations. Finally, Quercetin, Fisetin(1-), kaempferol, Wogonin, Beta-sitosterol, Baicalein, Skullcapflavone II, Stigmasterol were primarily screened to be the potentially effective active ingredients against COVID-19. The hub-proteins were TP53, JUN, ESR1, MAPK1, Akt1, HSP90AA1, TNF, IL-6, SRC, and RELA. The potential mechanisms of AC-SR formula in the treatment of COVID-19 were the TNF signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway, etc. Furthermore, virtual docking revealed that baicalein, (+)-catechin and fisetin(1-) exhibited high affinity to SARS-CoV-2 3CLpro, which has validated by the FRET-based enzymatic inhibitory assays with the IC50 of 11.3, 23.8, and 44.1 µM, respectively. And also, a concentration-dependent inhibition of baicalein, quercetin and (+)-catechin against SARS-CoV-2 ACE2 was observed with the IC50 of 138.2, 141.3, and 348.4 µM, respectively. These findings suggested AC-SR formula exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. Ultimately, this study would provide new perspective for discovering potential drugs and mechanisms against COVID-19.


Subject(s)
Acacia , COVID-19 Drug Treatment , Catechin , Drugs, Chinese Herbal , Humans , SARS-CoV-2 , Scutellaria baicalensis , Molecular Docking Simulation , Quercetin/pharmacology , Quercetin/therapeutic use , Network Pharmacology , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
7.
PLoS One ; 17(7): e0271112, 2022.
Article in English | MEDLINE | ID: covidwho-1933379

ABSTRACT

The outbreak of the coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 triggered a global pandemic where control is needed through therapeutic and preventive interventions. This study aims to identify natural compounds that could affect the fusion between the viral membrane (receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein) and the human cell receptor angiotensin-converting enzyme 2. Accordingly, we performed the enzyme-linked immunosorbent assay-based screening of 10 phytochemicals that already showed numerous positive effects on human health in several epidemiological studies and clinical trials. Among these phytochemicals, epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2. Alternately, in silico molecular docking studies of epigallocatechin gallate and angiotensin-converting enzyme 2 indicated a binding score of -7.8 kcal/mol and identified a hydrogen bond between R393 and angiotensin-converting enzyme 2, which is considered as a key interacting residue involved in binding with the severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain, suggesting the possible blocking of interaction between receptor-binding domain and angiotensin-converting enzyme 2. Furthermore, epigallocatechin gallate could attenuate severe acute respiratory syndrome coronavirus 2 infection and replication in Caco-2 cells. These results shed insight into identification and validation of severe acute respiratory syndrome coronavirus 2 entry inhibitors.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , COVID-19 , Catechin , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Catechin/analogs & derivatives , Catechin/pharmacology , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
8.
J Food Biochem ; 46(10): e14262, 2022 10.
Article in English | MEDLINE | ID: covidwho-1922970

ABSTRACT

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Subject(s)
COVID-19 Drug Treatment , Catechin , Laurus , Origanum , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin , Cinnamates , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Laurus/metabolism , Ligands , Petroselinum/metabolism , SARS-CoV-2
9.
Food Funct ; 13(15): 8038-8046, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1900678

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for the identification of compounds able to control, prevent or slow down the global pandemic. Several dietary polyphenols were assayed against binding to the SARS CoV-2 S1 spike protein and the human ACE-2 receptor, the target of the SARS CoV-2 virus using nano differential scanning fluorimetry, suggesting interaction of dietary polyphenols with both proteins. Following this initial screening the two dietary polyphenols with the strongest affinity were evaluated in a second functional binding assay. The assay was based on the thermophoresis of a fluorescently labelled spike protein and the ACE-2 receptor in the presence of dietary concentrations of the polyphenol in question. It could be experimentally shown that 5-caffeoyl quinic acid and epicatechin reduce the binding constant between SARS CoV-2 spike protein of the alpha variant and the ACE-2 receptor by a factor of ten. The finding could as well be applied to black tea and a coffee beverage with dietary 5-CQA concentrations for the alpha variant Spike protein. Hence it can be speculated that a cup of coffee reduces binding of the virus to its human target, therefore reducing the likelihood of infection with SARS CoV-2, acting as a virus entry-inhibitor.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Catechin , Humans , Peptidyl-Dipeptidase A/chemistry , Polyphenols , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
10.
Plant Physiol Biochem ; 185: 390-400, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1895375

ABSTRACT

Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.


Subject(s)
COVID-19 , Camellia sinensis , Catechin , Anthocyanins/metabolism , Caffeine , Camellia sinensis/metabolism , Catechin/metabolism , Humans , Plant Leaves/metabolism , Polyphenols/metabolism , SARS-CoV-2 , Tea
11.
Arch Virol ; 167(7): 1547-1557, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1859000

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to global public health. The emergence of SARS-CoV-2 variants is a significant concern regarding the continued effectiveness of vaccines and antiviral therapeutics. Thus, natural products such as foods, drinks, and other compounds should be investigated for their potential to treat COVID-19. Here, we examined the in vitro antiviral activity against SARS-CoV-2 of various polyethylene terephthalate (PET)-bottled green Japanese teas and tea compounds. Six types of PET-bottled green tea were shown to inhibit SARS-CoV-2 at half-maximal inhibitory concentrations (IC50) of 121- to 323-fold dilution. Our study revealed for the first time that a variety of PET-bottled Japanese green tea drinks inhibit SARS-CoV-2 infection in a dilution-dependent manner. The tea compounds epigallocatechin gallate (EGCG) and epicatechin gallate showed virucidal activity against SARS-CoV-2, with IC50 values of 6.5 and 12.5 µM, respectively. The investigated teas and tea compounds inactivated SARS-CoV-2 in a dose-dependent manner, as demonstrated by the viral RNA levels and infectious titers. Furthermore, the green teas and EGCG showed significant inhibition at the entry and post-entry stages of the viral life cycle and inhibited the activity of the SARS-CoV-2 3CL-protease. These findings indicate that green tea drinks and tea compounds are potentially useful in prophylaxis and COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Catechin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catechin/pharmacology , Humans , SARS-CoV-2 , Tea
12.
Inflammation ; 45(3): 1076-1088, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1838368

ABSTRACT

The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than - 6. Then, ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 µM, 13.14 ± 2.081 µM and 5.158 ± 0.928 µM respectively by FRET assay. Molecular docking results also showed that ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( -)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( -)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( -)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Sepsis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catechin/analogs & derivatives , Coronavirus 3C Proteases , Cytokine Release Syndrome , Flavanones , Humans , Mice , Molecular Docking Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Sepsis/drug therapy
13.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1580427

ABSTRACT

The COVID-19 pandemic has resulted in a huge number of deaths from 2020 to 2021; however, effective antiviral drugs against SARS-CoV-2 are currently under development. Recent studies have demonstrated that green tea polyphenols, particularly EGCG, inhibit coronavirus enzymes as well as coronavirus replication in vitro. Herein, we examined the inhibitory effect of green tea polyphenols on coronavirus replication in a mouse model. We used epigallocatechin gallate (EGCG) and green tea polyphenols containing more than 60% catechin (GTP60) and human coronavirus OC43 (HCoV-OC43) as a surrogate for SARS-CoV-2. Scanning electron microscopy analysis results showed that HCoV-OC43 infection resulted in virion particle production in infected cells. EGCG and GTP60 treatment reduced coronavirus protein and virus production in the cells. Finally, EGCG- and GTP60-fed mice exhibited reduced levels of coronavirus RNA in mouse lungs. These results demonstrate that green tea polyphenol treatment is effective in decreasing the level of coronavirus in vivo.


Subject(s)
Antiviral Agents/pharmacology , Catechin/analogs & derivatives , Coronavirus Infections/drug therapy , Polyphenols/pharmacology , Tea/chemistry , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Catechin/pharmacology , Catechin/therapeutic use , Cell Line , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/physiology , Disease Models, Animal , Humans , Mice , Polyphenols/chemistry , Polyphenols/therapeutic use
14.
Comput Biol Med ; 141: 105155, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588033

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the first target of SARS-CoV-2 and a key functional host receptor through which this virus hooks into and infects human cells. The necessity to block this receptor is one of the essential means to prevent the outbreak of COVID-19. This study was conducted to determine the most eligible natural compound to suppress ACE2 to counterfeit its interaction with the viral infection. To do this, the most known compounds of sixty-six Iraqi medicinal plants were generated and retrieved from PubChem database. After preparing a library for Iraqi medicinal plants, 3663 unique ligands' conformers were docked to ACE2 using the GLIDE tool. Results found that twenty-three compounds exhibited the highest binding affinity with ACE2. The druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened twenty-three compounds, epicatechin and kempferol were predicted to exert the highest druglikeness and lowest toxicity potentials. Extended Molecular dynamics (MD) simulations showed that ACE2-epicatechin complex exhibited a slightly higher binding stability than ACE2-kempferol complex. In addition to the well-known ACE2 inhibitors that were identified in previous studies, this study revealed for the first time that epicatechin from Hypericum perforatum provided a better static and dynamic inhibition for ACE2 with highly favourable pharmacokinetic properties than the other known ACE2 inhibiting compounds. This study entailed the ability of epicatechin to be used as a potent natural inhibitor that can be used to block or at least weaken the SARS-CoV-2 entry and its subsequent invasion. In vitro experiments are required to validate epicatechin effectiveness against the activity of the human ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/pharmacology , Catechin , SARS-CoV-2 , Virus Internalization/drug effects , COVID-19 , Catechin/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
15.
Nutrients ; 13(11)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1573692

ABSTRACT

This study examines the correlation of acute and habitual dietary intake of flavan-3-ol monomers, proanthocyanidins, theaflavins, and their main food sources with the urinary concentrations of (+)-catechin and (-)-epicatechin in the European Prospective Investigation into Cancer and Nutrition study (EPIC). Participants (N = 419, men and women) provided 24-h urine samples and completed a 24-h dietary recall (24-HDR) on the same day. Acute and habitual dietary data were collected using a standardized 24-HDR software and a validated dietary questionnaire, respectively. Intake of flavan-3-ols was estimated using the Phenol-Explorer database. Concentrations of (+)-catechin and (-)-epicatechin in 24-h urine were analyzed using tandem mass spectrometry after enzymatic deconjugation. Simple and partial Spearman's correlations showed that urinary concentrations of (+)-catechin, (-)-epicatechin and their sum were more strongly correlated with acute than with habitual intake of individual and total monomers (acute rpartial = 0.13-0.54, p < 0.05; and habitual rpartial = 0.14-0.28, p < 0.01), proanthocyanidins (acute rpartial = 0.24-0.49, p < 0.001; and habitual rpartial = 0.10-0.15, p < 0.05), theaflavins (acute rpartial = 0.22-0.31, p < 0.001; and habitual rpartial = 0.20-0.26, p < 0.01), and total flavan-3-ols (acute rpartial = 0.40-0.48, p < 0.001; and habitual rpartial = 0.23-0.33, p < 0.001). Similarly, urinary concentrations of flavan-3-ols were weakly correlated with both acute (rpartial = 0.12-0.30, p < 0.05) and habitual intake (rpartial = 0.10-0.27, p < 0.05) of apple and pear, stone fruits, berries, chocolate and chocolate products, cakes and pastries, tea, herbal tea, wine, red wine, and beer and cider. Moreover, all comparable correlations were stronger for urinary (-)-epicatechin than for (+)-catechin. In conclusion, our data support the use of urinary concentrations of (+)-catechin and (-)-epicatechin, especially as short-term nutritional biomarkers of dietary catechin, epicatechin and total flavan-3-ol monomers.


Subject(s)
Biflavonoids/analysis , Catechin/urine , Diet/statistics & numerical data , Flavonoids/analysis , Proanthocyanidins/analysis , Adult , Aged , Biomarkers/urine , Catechin/analysis , Diet Surveys , Eating , Europe , Female , Humans , Male , Middle Aged , Nutrition Assessment , Prospective Studies , Statistics, Nonparametric
16.
Pharmacol Res ; 172: 105820, 2021 10.
Article in English | MEDLINE | ID: covidwho-1531713

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19 Drug Treatment , Enzyme Inhibitors/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/pharmacology , Binding, Competitive , Biological Products/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chalcones/pharmacology , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Ginsenosides/pharmacology , Humans , Interferometry , Mice, Inbred C57BL , Molecular Dynamics Simulation , Phenols/pharmacology , Protein Binding
17.
Eur Rev Med Pharmacol Sci ; 25(21): 6741-6744, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1524862

ABSTRACT

OBJECTIVE: Coronaviruses are large, enveloped, positive-stranded RNA viruses. These viruses contain spike-like projections of glycoprotein on their surface, which appear like a crown. Millions of infections and thousands of deaths have been reported worldwide to date. Hence, the objective of the present study was to look for in silico evaluation of certain commercially available flavonoids against SARS-CoV-2 enzyme. MATERIALS AND METHODS: The in silico docking calculations were carried out using AutoDock 4.2 software. For the computational investigation, Apigenin, Catechin, Galangin, Luteolin, Naringenin were selected. An anti-viral drug Remdesivir was selected as reference drug. RESULTS: In the present study we found that Naringenin showed excellent binding score with the SARS-CoV-2 enzyme compared to the reference drug and other selected flavonoids. CONCLUSIONS: Based on the docking results, we conclude that Naringenin can be considered worthwhile to check its antiviral activity for the management of Coronavirus disease.


Subject(s)
Antiviral Agents/chemistry , Molecular Docking Simulation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catechin/chemistry , Catechin/metabolism , Flavanones/chemistry , Flavanones/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Humans , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
18.
Phytomedicine ; 96: 153853, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1510181

ABSTRACT

BACKGROUND AND PURPOSE: Previous studies suggest that major Camellia sinensis (tea) catechins can inhibit 3-chymotrypsin-like cysteine protease (3CLpro), inspiring us to study 3CLpro inhibition of the recently discovered catechins from tea by our group. METHODS: Autodock was used to dock 3CLpro and 16 tea catechins. Further, a 3CLpro activity detection system was used to test their intra and extra cellular 3CLpro inhibitory activity. Surface plasmon resonance (SPR) was used to analyze the dissociation constant (KD) between the catechins and 3CLpro. RESULTS: Docking data suggested that 3CLpro interacted with the selected 16 catechins with low binding energy through the key amino acid residues Thr24, Thr26, Asn142, Gly143, His163, and Gln189. The selected catechins other than zijuanin D (3) and (-)-8-(5''R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11) can inhibit 3CLpro intracellularly. The extracellular 3CLpro IC50 values of (-)-epicatechin 3-O-caffeoate (EC-C, 1), zijuanin C (2), etc-pyrrolidinone C and D (6), etc-pyrrolidinone A (9), (+)-gallocatechin gallate (GCG), and (-)-epicatechin gallate (ECG) are 1.58 ± 0.21, 41.2 ± 3.56, 0.90 ± 0.03, 46.71 ± 10.50, 3.38 ± 0.48, and 71.78 ± 8.36 µM, respectively. The KD values of 1, 6, and GCG are 4.29, 3.46, and 3.36 µM, respectively. CONCLUSION: Together, EC-C (1), etc-pyrrolidinone C and D (6), and GCG are strong 3CLpro inhibitors. Our results suggest that structural modification of catechins could be conducted by esterificating the 3-OH as well as changing the configuration of C-3, C-3''' or C-5''' to discover strong SARS-CoV-2 inhibitors.


Subject(s)
COVID-19 , Camellia sinensis , Catechin , Catechin/analysis , Catechin/pharmacology , Humans , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2 , Tea
19.
Molecules ; 26(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512511

ABSTRACT

This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.


Subject(s)
Catechin/pharmacology , Coronavirus Papain-Like Proteases/metabolism , Tea/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , Caco-2 Cells , Camellia sinensis/metabolism , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/metabolism , Coronavirus Papain-Like Proteases/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tea/chemistry , Tea/physiology , COVID-19 Drug Treatment
20.
Drug Des Devel Ther ; 15: 4447-4454, 2021.
Article in English | MEDLINE | ID: covidwho-1502185

ABSTRACT

Coronavirus disease-19 (COVID-19) pandemic is currently ongoing worldwide and causes a lot of deaths in many countries. Although different vaccines for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have been developed and are now available, there are no effective antiviral drugs to treat the disease, except for Remdesivir authorized by the US FDA to counteract the emergency. Thus, it can be useful to find alternative therapies based on the employment of natural compounds, with antiviral features, to circumvent SARS-CoV-2 infection. Pre-clinical studies highlighted the antiviral activities of epigallocatechin-3-gallate (EGCG), a catechin primarily found in green tea, against various viruses, including SARS-CoV-2. In this review, we summarize this experimental evidence and highlight the potential use of EGCG as an alternative therapeutic choice for the treatment of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Catechin/analogs & derivatives , Antiviral Agents/administration & dosage , COVID-19/virology , Catechin/administration & dosage , Catechin/pharmacology , Humans , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL